Proposed AERO Mathematics: A Crosswalk of AERO and the Common Core

Mathematics: Crosswalk AERO and the Common Core

Introduction

AERO Mathematics Curriculum Framework 2
FAQ Common Core 3
Crosswalk
Kindergarten 7
Grade 1 14
Grade 2 20
Grade 3 26
Grade 4 34
Grade 5 44
Grade 6 53
Grade 7 65
Grade 8 77
Crosswalk
High School 88

AERO K-8 Mathematics Curriculum Framework

When curriculum standards were first developed in the 1990's, they were typically organized into grade spans. The goal was to allow curriculum flexibility with the idea that a student was expected to understand the concept, "By the End of Grade..." The general guide for the grade placement of standards within grade bands was perceived beliefs within the content community about when and how the big ideas of a discipline unfolded. State and national standards were in turn used by educators to develop aligned curriculum frameworks and later, accountability systems.

In light of current information being derived from cognitive research, the sequential arrangement of topics and concepts that are embedded in broad standards is being rethought. These ideas are now being mapped into learning progressions, ${ }^{1}$ webs of interconnected ideas that illustrate how over time, student's ideas deepen and become more sophisticated and do so in predictable ways. Research-based learning progressions enable us to reframe how we think about Standards and Learning Expectations for students and to view them from a long-range perspective.

The AERO Mathematics Framework grade level indicators (K-8).reflect the current research on learning progressions. These grade level indicators are performance descriptors that indicate what typical progress towards the standards may look like. Using the metaphor of a ladder helps to illustrate the importance of the mastery of precursor ideas and skills as essential for making the cognitive leaps that results in a deep and flexible understanding of the standards. These progression points inform discussions about curriculum planning and can assist educators in making judgments about student progress towards a standard.

The AERO Mathematics Framework does not tell teachers how to teach rather helps guide teachers on the knowledge and skills students should have so they can create the best lessons and learning environments. These grade level indicators also help students and parents by setting clear and realistic goals for success. The Framework allows schools to move the conversation from the mathematics content to engaging discussions about instructional effectiveness.
. ${ }^{1}$ A representative set of incremental and interconnected stages in an individual's development of . understanding about a specific concept or topic that, over time, evolves toward increasingly complex ways . of thinking.

FAQ Common Core Standards

What is the Common Core State Standards Initiative?

The Common Core State Standards Initiative is a voluntary effort through the Council of Chief State School Officers (CCSSO) and the National Governors Association (NGA) Center for Best Practices to develop a common core of standards that are aligned with college and work expectations, include rigorous content and skills, and are internationally benchmarked. The intent is that these standards will be aligned to state assessment and classroom practice. Fortyeight states signed a memorandum of understanding to participate in the Common Core State Standards Initiative.

What content areas and grade levels are included in the Common Core Standards?

There are two sets of Common Core standards, spanning Kindergarten through grade 12-English-language arts and math. English-language arts and math were the first subjects chosen because these two subject areas provide core skills upon which students build skill sets in other subject areas. They are also the subjects most frequently assessed for accountability purposes.

Why do we need Common Core Standards?

Standards ensure that all students, no matter where they live, have the opportunity to be prepared for success in postsecondary education and the workforce. Currently, education standards are developed and implemented on a state-by-state basis.

Common standards will help ensure that all students are receiving a high-quality education consistently, from school-to-school and state-to-state. Common standards will provide a greater opportunity to share experiences and best practices within and across states that will improve the ability to best serve the needs of students.

What criteria was used to develop the Common Core Standards?

The standards:

- Are aligned with college and work expectations;
- Are clear, understandable and consistent;
- Include rigorous content and application of knowledge through high-order skills;
- Build upon strengths and lessons of current state standards;
- Are informed by other top performing countries, so that all students are prepared to succeed in a global economy and society; and
- Are evidence-based.

Who was involved in developing the Common Core Standards?

To create high-quality education standards, development occurred in three phases by groups that included teachers, parents, administrators, and educational experts, as well as select governors and state school officers. Teachers have been a critical voice in the development of the standards. The National Education Association (NEA), American Federation of Teachers (AFT), National Council of Teachers of Mathematics (NCTM), and National Council of Teachers of English (NCTE), among other organizations have been instrumental in bringing together teachers to provide specific, constructive feedback on the standards.

How does the K-8 AERO Framework align with the Common Core Standards?

The AERO Curriculum Framework is written in language more applicable to assessment. The Common Core Standards are written from an instructional standpoint.(See chart below) Both articulate what students should know/understand and be able to do to be prepared for entry-level college courses and career training programs.

Common Core
5. Apply properties of operations as strategies to multiply and divide.
Examples: If $6 \times 4=24$ is known, then 4×6 $=24$ is also known. (Commutative property of multiplication.)
$3 \times 5 \times 2$ can be found by $3 \times 5=15$, then 15 $\times 2=30$, or by $5 \times 2=10$, then $3 \times 10=30$.
(Associative property of multiplication.)
Knowing that $8 \times 5=40$ and $8 \times 2=16$, one can find 8×7 as $8 \times(5+2)=(8 \times 5)+(8 \times 2)$ $=40+16=56$. (Distributive property.)

AERO

Use and explain the operations of multiplication and division including the properties (e.g., identity element of multiplication, commutative property, property of zero, associative property, inverse operations).

Similar to AERO's current standards and grade level expectations, the Common Core Standards do not represent a curriculum. Instead they are learning goals that students reach only when supported by a rich and engaging curriculum that infuses the mathematical practices outlined in the Standards document.

AERO has produced this crosswalk resource that presents the alignment of Common Core Standards and the AERO Mathematics Curriculum Framework. The intent of this crosswalk is to enhance understanding of how the Common Core State Standards in mathematics compares with current expectations AERO has for students and to inform thinking about the implementation of the Common Core Standards.

The K-8 Common Core Standards alignment documents are organized by grade level and "critical area" or AERO Grade level expectations. The "critical areas" as described in the common Core introductory sections for each grade level indicate the focus of the clusters of standards for the grade level and align closely with the AERO Standards and benchmarks.

The alignment shows a very good fit between our AERO Grade Level Expectations and Common Core Standards. There are areas, where the Common Core Standards clarify the intent of AERO Grade Level Expectations. while this suggests a misalignment, the intended rigor is not compromised.

The documents complement each other and provide focused and specific progressions of understandings, content knowledge, and skills that lead to college- and career-readiness. They define what students should "understand" as . well as what students should be able to do to demonstrate understanding.

How does the AERO High School Framework align with the Common Core Standards?

The Common Core Standards for high school mathematics are organized under six conceptual categories, the equivalent of AERO's strands in the discrete mathematics courses. Common Core Standards are further grouped in clusters that reflect topics in the AERO High School document. Of the 136 High School Mathematics Common Core Standards, 92 represent college- and careerreadiness (CCR) and should be met by all students. The other 44 Common Core Standards have been designated STEM (Science, Technology, Engineering, Math) for students who wish to take advanced mathematics courses, such as calculus, advanced statistics or discrete mathematics (see table below). Some Common Core Standards designated as STEM are addressed in traditional Algebra II courses and a few reflect foundational knowledge addressed in Algebra I and Geometry.

Common Core Standards Category	College/Career Ready Required of ALL students	STEM Ready
Number and Quantity	9	18
Algebra	24	4
Functions	21	7
Geometry	37	6
Statistics and Probability	22	9
Modeling	Infused throughout all categories	
92		44

Using both documents can benefit educators in informing instruction and planning assessments as they develop and implement a rigorous curriculum that promotes student learning and growth in student achievement.

CROSSWALK COMMON CORE AERO	
Kindergarten	
In Kindergarten, instructional time should focus on two critical areas: (1) representing, relating, and operating on whole numbers, initially with sets of object (2) describing shapes and space. More learning time in Kindergarten should be devoted to number than to other topics (Common Core)	
Common Core	AERO
Counting and Cardinality	
Know number names and the count sequence.	
1. Count to 100 by ones and by tens.	Count forward by 1's to 31 and backward from 20 with and without objects CHANGE Count forward by 1's and tens to 100 and backward from 100 with and without objects
2. Count forward beginning from a given number within the known sequence (instead of having to begin at 1).	Use a number line or chart to locate and identify the numbers (from 1 to 31) coming before/after a given number and between 2 given numbers Change Use a number line or chart to locate and identify the numbers (from 1 to 100) coming before/after a given number and between 2 given numbers

AERO Crosswalk

3. Write numbers from 0 to 20 . Represent a number of objects with a written numeral 020 (with 0 representing a count of no objects). Count to tell the number of objects	Identify and read aloud numbers from 0 to at least 31 Change Identify, write, and read aloud numbers from 0 to at least 31 Count how many objects are in a set of up to 10 objects and count out a specific number of objects (up to 10) from a larger set. Change Count how many objects are in a set of up to 20 objects and count out a specific number of objects (up to 20) from a larger set.
4. Understand the relationship between numbers and quantities; connect counting to cardinality. a. When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object. b. Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted. c. Understand that each successive number name refers to a quantity that is one larger.	Use the ordinal numerals $1^{\text {st }}$ through $10^{\text {th }}$ to discuss positions in ordered lists Also see above
5. Count to answer "how many?" questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1-20, count out that many objects. Compare numbers.	Count how many objects are in a set of up to 10 objects and count out a specific number of objects (up to 10) from a larger set. CHANGE Count how many objects are in a set of up to 20 objects and count out a specific number of objects (up to 20) from a larger set.

6. Identify whether the number of objects in one group is greater than, less than, or

Compare two sets of up to 10 objects each and explain why the number of objects in

equal to the number of objects in another group, e.g., by using matching and counting strategies. 1	one set is equal to, greater than, or less than the number of objects in the other set. CHANGE
7. Compare two numbers between 1 and 10 presented as written numerals.	Compare two sets of up to 20 objects each and explain why the number of objects in one set is equal to, greater than, or less than the number of objects in the other set.
Operations and Algebraic Thinking	
Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from.	
1. Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations.	Use concrete objects to model simple joining and separating situations (addition and subtraction) of whole numbers related to sums of 10 or less and write corresponding number sentence
2. Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.	Model meanings of operations and the relationship between addition and subtraction (e.g., identity element of addition, commutative property) using manipulatives
3. Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., $5=2+3$ and $5=4+1$).	
4. For any number from 1 to 9 , find the number that makes 10 when added to the given number, e.g., by using objects or drawings, and record the answer with a drawing or equation.	Use concrete objects to model simple joining and separating situations (addition and subtraction) of whole numbers related to sums of 10 or less and write corresponding number sentence Use drawings and labels to record solutions of addition and subtraction problems with answers less than or equal to 10
5. Fluently add and subtract within 5.	Not specifically addressed as being fluent
Number and Operations in Base Ten	
Work with numbers 11-19 to gain foundations for place value.	
1. Compose and decompose numbers from 11 to 19 into ten ones and some further ones, e.g., by using objects or drawings, and record each composition or decomposition by a drawing or equation (e.g., $18=10+8$);	Identify place value of each digit utilizing standard and expanded form through 20.

understand that these numbers are composed of ten ones and one, two, three, four, five, six, seven, eight, or nine ones.

Measurement and Data	
Describe and compare measurable attributes.	
1. Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object.	Identify measurable attributes, such as length, weight, and capacity, and use these attributes to make direct comparisons Change Identify and describe measurable attributes, such as length, weight, and capacity, and use these attributes to make direct comparisons
2. Directly compare two objects with a measurable attribute in common, to see which object has "more of"/"less of" the attribute, and describe the difference. For example, directly compare the heights of two children and describe one child as taller/shorter.	Use comparative vocabulary in measurement settings (e.g., long/longer, short/shorter, more/less, hotter/colder, heavier/lighter, bigger/smaller) Determine and describe comparisons of length (longer, shorter, the same), mass (heavier, lighter, the same), and capacity (holds more, less, or about the same) using different-shaped or congruent containers, objects or figures.
Classify objects and count the number of objects in each category.	
3. Classify objects into given categories; count the numbers of objects in each category and sort the categories by count. (a Limit category counts to be less than or equal to 10.)	Sort objects into groups in one or more ways and identify which attribute was used to sort (size, shape, and color). Count how many objects are in a set of up to 20 objects and count out a specific number of objects (up to 20) from a larger set. Identify and create, compare and describe sets of objects as more, less or equal

Geometry	
Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres).	
1. Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind,	Use relative position words including before/after. far/near, and over/under to place objects and next to. Describe the location of one object relative to another object using words such as in, out, over, under, above, below, between, next to, behind, and in front of

5. Model shapes in the world by building shapes from components (e.g., sticks and clay balls) and drawing shapes.	Not specifically identified as a progression, rather part of the learning opportunities which lead to identifying and describing two and three dimensional figures
6. Compose simple shapes to form larger shapes. For example, "Can you join these two triangles with full sides touching to make a rectangle?"	

CROSSWALK COMMON CORE AERO
In Grade 1, instructional time should focus on four critical areas:
(1) developing understanding of addition, subtraction, and strategies for addition and
subtraction within 20;
(2) developing understanding of whole number relationships and place value, including
grouping in tens and ones;
(3) developing understanding of linear measurement and measuring lengths as iterating
length units; and
(4) reasoning about attributes of, and composing and decomposing geometric shapes.

Common Core	AERO
Operations and Algebraic Thinking	
Represent and solve problems involving addition and subtraction.	
1. Use addition and subtraction within 20 to	
solve word problems involving situations	
of adding to, taking from, putting together,	
taking apart, and comparing, with	
unknowns in all positions, e.g., by using	
objects,	
drawings, and equations with a symbol for	
the unknown number to represent the	
problem.	

2. Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem. subtraction.
3. Apply properties of operations as strategies to add and subtract. 3 Examples: If $\mathbf{8 + 3} \mathbf{= 1 1}$ is known, then $\mathbf{3 + 8 = 1 1}$ is also known. (Commutative property of addition.) To add $2+6+4$, the second two numbers can be added to make a ten, so $2+6+4=2+10=12$. (Associative property of addition.)
4. Understand subtraction as an unknownaddend problem. For example, subtract 10 8 by finding the number that makes 10 when added to 8

Solve and create a story problem that matches an addition or subtraction expression or equation using physical objects, pictures, or words.

Understand and apply properties of operations and the relationship between addition and

Use the concept of commutative [4 + 2 = 2 + 4], associative $[(4+3)+7=4+(3+7)]$, and identity $[0+3=3$] properties of addition to solve problems involving basic facts.

Add and subtract within 20.

5. Relate counting to addition and subtraction (e.g., by counting on 2 to add 2).

6. Add and subtract within 20,

 demonstrating fluency for addition and subtraction within 10 . Use strategies such as counting on; making ten (e.g., $8+6=8$ + $2+4=10+4=14$); decomposing a number leading to a ten (e.g., 13-4=13-3-1=10 $-1=9$); using the relationship between addition and subtraction (e.g., knowing that $8+4=12$, one knows 12-8=4); and creating equivalent but easier or known sums (e.g., adding $6+7$ by creating the known equivalent $6+6+1=12+1=13$).Count forward by 1's to 120, with and without objects and starting with any number less than 120, and count by two's to at least 100
Recall from memory single digit addition facts (to $9+9$) and the corresponding subtraction facts

Apply strategies, including counting on, counting back, and doubling, for addition facts to at least 10.

Use movement on the number line to demonstrate the inverse relationship between addition and subtraction

Work with addition and subtraction equations.
7. Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false. For example, which of the following equations are true and which are false? $6=$ $6,7=8-1$, $5+2=2+5,4+1=5+2$.
8. Determine the unknown whole number in an addition or subtraction equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations 8 + ? $=11,5=-3,6+6=$ - .

Model situations and solve equations that require addition and subtraction of whole numbers; use objects, pictures, and symbols

Select and/or write number sentences to find the unknown in problem- solving contexts involving single-digit addition and subtraction using appropriate labels

Number and Operations in Base Ten	
Extend the counting sequence.	
1. Count to 120, starting at any number less than 120. In this range, read and write numerals and represent a number of objects with a written numeral.	Count forward by 1's to 99 and backward from 20 with and without objects and count by two's to at least 100 Change Count forward by 1 's to 120 , starting at any number less than 120 with and without objects and count by two's to at least 100
Understand place value.	
2. Understand that the two digits of a twodigit number represent amounts of tens and ones. Understand the following as special cases: a. 10 can be thought of as a bundle of ten ones - called a "ten." b. The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones. c. The numbers $10,20,30,40,50,60,70,80$, 90 refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones)	Construct models and identify place value of each digit utilizing standard and expanded form through 99
3. Compare two two-digit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols >, =, and <. Use place value understanding and properties of operations to add and subtract.	Write, compare, and order numbers to at least 100 using the words equal to, greater than, less than, greatest, and least when appropriate. Change

	Write, compare, and order numbers to at least 100 using the words equal to, greater than, less than, greatest, and least when appropriate. recording the results of comparisons with the symbols >, =, and <. When appropriate
4. Add within 100, including adding a twodigit number and a one-digit number, and adding a two-digit number and a multiple of 10, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten.	Use concrete objects to model the addition of two or three addends and subtraction of whole numbers related to sums less than 20 and write the corresponding number sentence Change Use concrete objects to model the addition of two or three addends and subtraction of whole numbers related to sums less than 20 and write the corresponding number sentence. Using concrete models or drawings and strategies based on place value, add within 100, including adding a two-digit number and a one-digit number.
5. Given a two-digit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used. 6. Subtract multiples of 10 in the range 1090 from multiples of 10 in the range 10-90 (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.	Given a number and number line/hundreds chart, identify the nearest ten

Measurement and Data

Measure lengths indirectly and by iterating length units.

1. Order three objects by length; compare the lengths of two objects indirectly by using a third object.

Estimate and verify by measuring, length, weight, and capacity using nonstandard units (e.g., sticks, paper clips, blocks, beans)

Identify the appropriate tool used to measure length (i.e., ruler), weight (i.e., scale), time (i.e., clock, calendar) and temperature (i.e., thermometer)

Compare, order, describe, and represent objects by length and weight

Use a variety of non-standard units to measure length number of same-size length units that span it with no gaps or overlaps. Limit to contexts where the object being measured is spanned by a whole number of length units with no gaps or overlaps.

Tell and write time.
3. Tell and write time in hours and halfhours using analog and digital clocks.

Tell time to the hour and half-hour using digital and analog clocks

Represent and interpret data.	
.	
4. Organize, represent, and interpret data	Gather data and represent data using tallies,
with up to three categories; ask and answer	tables, picture graphs, and bar-type graphs
questions about the total number of data	
points, how many in each category, and	
how many more or less are in one category	
than in	Analyze and interpret data by using mathematical language such as more than, less than, etc.

Geometry			
Reason with shapes and their attributes.			
1. Distinguish between defining attributes	Name, sort, and sketch two-dimensional shapes (circles, triangles, rectangles (e.g., triangles are closed and three-sided) versus non-defining attributes (e.g., color, including squares) regardless of		
orientation, overall size); build and draw			
shapes to possess defining attributes.		\quad	orientation..
:---			
2. Compose two-dimensional shapes			
(rectangles, squares, trapezoids, triangles,			
half-circles, and quarter-circles) or three-			
dimensional shapes (cubes, right			
rectangular prisms, right circular cones, and			
right circular cylinders) to create a			
composite shape, and compose new shapes			
dimensional objects i.e. cubes and			
spheres, regardless of size or orientation			
Compose and decompose common two-			
dimensional figures.			
the composite shape.			

CROSSWALK COMMON CORE AERO	
GRADE 2	
In Grade 2, instructional time should focus on four (1) extending understanding of base-ten notation; (2) building fluency with addition and subtraction; (3) using standard units of measure; and (4) describing and analyzing shapes.	
Common Core	AERO
Operations and Algebraic Thinking	
Represent and solve problems involving addition and subtraction.	
1. Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem. Add and subtract within 20.	Generate and solve one step addition and subtraction problems based on practical situations Change Generate and solve one and two step addition and subtraction word problems based on practical situations
2. Fluently add and subtract within 20 using mental strategies. By end of Grade 2, know from memory all sums of two one-digit numbers. Work with equal groups of objects to gain foundations for multiplication.	Carry out addition and subtraction mentally involving: 3-digit numbers and ones; 3-digit numbers and tens; 3-digit numbers and hundreds
3. Determine whether a group of objects (up to 20) has an odd or even number of members, e.g., by pairing objects or counting them by 2 s ; write an equation to express an even number as a sum of two equal addends.	Demonstrate the relationships between odd and even numbers in addition and subtraction such as, odd + odd $=$ even or odd $\boldsymbol{-}$ even $=$ odd

4. Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal addends.	Model, represent, and explain multiplication (products to 81) as a rectangular array, as repeated addition and skip counting, or as equal-sized moves on the number line and division as repeated subtraction, sharing and grouping
Number and Operations in Base Ten	
Understand place value.	
1. Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases: a. $\mathbf{1 0 0}$ can be thought of as a bundle of ten tens - called a "hundred." b. The numbers $\mathbf{1 0 0}, \mathbf{2 0 0}, \mathbf{3 0 0}, \mathbf{4 0 0}, 500,600$, 700, 800, 900 refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).	Construct models and identify place value of each digit utilizing standard and expanded form through 999.
2. Count within 1000 ; skip-count by 5 s , 10 s , and 100s.	Count by tens or hundreds forward and backward starting at any number from 1 to 999 and count by fives and tens to at least 100. Change Count by fives, tens and hundreds starting at any number from 1 to 999
3. Read and write numbers to $\mathbf{1 0 0 0}$ using base-ten numerals, number names, and expanded form.	Identify, read aloud and write numbers to 1000. Construct models and identify place value of each digit utilizing standard and expanded form through 999

\(\left.$$
\begin{array}{|l|l}\hline \text { 4. Compare two three-digit numbers based } \\
\text { on meanings of the hundreds, tens, and } \\
\text { ones digits, using >, =, and < symbols to } \\
\text { record the results of comparisons. }\end{array}
$$ \quad \begin{array}{l}Compare and order numbers from 0 to at

least 1,000 using the words equal to,

greater than, less than, greatest, or least

when appropriate.\end{array}\right\}\)| Change |
| :--- |
| Compare and order numbers from 0 to at |
| least 1,000 using the words equal to, |
| greater than, less than, greatest, or least |
| when appropriate. |
| using $>,=$, and < symbols to record the |
| results of comparisons |

Use place value understanding and properties of operations to add and subtract.

5. Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction.	Demonstrate efficient procedures for adding and subtracting 2 and 3 digit whole numbers and explain why the procedures work on the basis of place value and number properties		
6. Add up to four two-digit numbers using strategies based on place value and			
properties of operations.			
7. Add and subtract within 1000, using			
concrete models or drawings and strategies			
based on place value, properties of			
operations, and/or the relationship between			
addition and subtraction; relate the strategy			
to a written method. Understand that in		\quad	adding or subtracting three- digit numbers,
:---			
one adds or subtracts hundreds and			
hundreds, tens and tens, ones and ones;			
and sometimes it is necessary to compose			
or decompose tens or hundreds.			

Measurement and Data	
Measure and estimate lengths in standard units.	
1. Measure the length of an object by selecting and using appropriate tools such as rulers, yardsticks, meter sticks, and measuring tapes. Select the appropriate units for measuring ime, length, weight, and temperature 2. Measure the length of an object twice, using length units of different lengths for the two measurements; describe how the two measurements relate to the size of the unit chosen. 3. Estimate lengths using units of inches, Select and use appropriate tools and units to measure length, time, capacity, and weight (e.g., scales for kilograms; rulers for centimeters; measuring containers for cup, feet, centimeters, and meters. 4. Measure to determine how much longer one object is than another, expressing the length difference in terms of a standard length unit	

6. Represent whole numbers as lengths from	Use words, number lines, and models to compare, and order whole numbers
spaced points corresponding to the numbers	through 999
$0,1,2, \ldots$, and represent whole-number sums	
and differences within 100 on a number line	
diagram.	

Work with time and money.

7. Tell and write time from analog and digital clocks to the nearest five minutes, using a.m. and p.m.	Tell time to the nearest quarter hour and 5 minute interval using digital and analog clocks Use elapsed time in one hour increments, beginning on the hour, to determine start, end, and elapsed time
8. Solve word problems involving dollar bills, quarters, dimes, nickels, and pennies, using \$ and ϕ symbols appropriately. Example: If you have 2 dimes and 3 pennies, how many cents do you have?	Determine the value of a given set of coins Use decimals to show money amounts
Represent and interpret data.	
9. Generate measurement data by measuring lengths of several objects to the nearest whole unit, or by making repeated measurements of the same object. Show the measurements by making a line plot, where the horizontal scale is marked off in wholenumber units.	Identify real life situations to gather data over time;
10. Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.	Use tables, pictographs, and bar graphs to represent data Interpret data presented in circle, line, and bar graphs and answer questions about the displayed situation.

Geometry	
Reason with shapes and their attributes.	
1. Recognize and draw shapes having specified attributes, such as a given number of angles or a given number of equal faces. Identify triangles, quadrilaterals, pentagons, hexagons, and cubes.Describe, sketch, and compare two- dimensional shapes (rhombus, square, triangle, trapezoid, rectangle, pentagon, hexagon, octagon, and decagon) regardless of orientation..	

CROSSWALK	IMON CORE AERO
GRADE 3	
In Grade 3, instructional time should focus on four critical areas: (1) developing understanding of multiplication and division and strategies for multiplication and division within 100; (2) developing understanding of fractions, especially unit fractions (fractions with numerator 1); (3) developing understanding of the structure of rectangular arrays and of area; and (4) describing and analyzing two-dimensional shapes.	
Common Core	AERO
Operations and Algebraic Thinking	
Represent and solve problems involving multiplication and division.	
1. Interpret products of whole numbers, e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5×7.	Apply models of multiplication (e.g., equalsized groups, arrays, area models, equal "jumps" on number lines and hundreds charts) and division (e.g., repeated subtraction, partitioning, and sharing) to solve problems
2. Interpret whole-number quotients of whole numbers, e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as 56 $\div 8$.	Apply models of multiplication (e.g., equalsized groups, arrays, area models, equal "jumps" on number lines and hundreds charts) and division (e.g., repeated subtraction, partitioning, and sharing) to solve problems

3. Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem. 1	Apply models of multiplication (e.g., equalsized groups, arrays, area models, equal "jumps" on number lines and hundreds charts) and division (e.g., repeated subtraction, partitioning, and sharing) to solve problems
4. Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each other equations 8 $\times ?=48,5=3,6 \times 6=$?	Select and/or write number sentences (equations) to find the unknown in problemsolving contexts involving two-digit times one-digit multiplication using appropriate labels Model, explain, and solve open number sentences including addition, subtraction, and multiplication facts.
Understand properties of multiplication and the relationship between multiplication and division.	
5. Apply properties of operations as strategies to multiply and divide. Examples: If $6 \times 4=24$ is known, then 4×6 $=24$ is also known. (Commutative property of multiplication.) $3 \times 5 \times 2$ can be found by $3 \times 5=15$, then 15 $\times 2=30$, or by $5 \times 2=10$, then $3 \times 10=30$. (Associative property of multiplication.) Knowing that $8 \times 5=40$ and $8 \times 2=16$, one can find 8×7 as $8 \times(5+2)=(8 \times 5)+(8 \times 2)$ $=40+16=56$. (Distributive property.)	Use and explain the operations of multiplication and division including the properties (e.g., identity element of multiplication, commutative property, property of zero, associative property, inverse operations).
6. Understand division as an unknownfactor problem. For example, find $32 \div 8$ by finding the number that makes 32 when multiplied by 8 .	Apply the inverse relationship between multiplication and division (e.g., $5 \times 6=30$, $30 \div 6=5$) and the relationship between multiples and factors.
Multiply and divide within 100.	
7. Fluently multiply and divide within 100 , using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows $40 \div 5=$ 8) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers.	Identify whole number factors and/or pairs of factors for a given whole number through 24.

Solve problems involving the four operations, and identify and explain patterns in arithmetic.

8. Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. 3	Generate and solve two step addition and subtraction problems and one step multiplication problems based on practical situations
9. Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends.	Recognize and describe patterns using objects and numbers found in tables, number charts, and charts
Number and Operations in Base Ten	
Use place value understanding and properties of operations to perform multi-digit arithmetic.	
1. Use place value understanding to round whole numbers to the nearest 10 or 100.	Round whole numbers through 10,000 to the nearest ten, hundred, and thousand and round fractions to the nearest whole number
2. Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.	Describe and show relationships between strategies and procedures for multiplying and dividing that involve addition and subtraction and explain strategies
3. Multiply one-digit whole numbers by multiples of 10 in the range 10-90 (e.g., $9 \times$ $80,5 \times 60$) using strategies based on place value and properties of operations	Name the number that is 10 more than or 100 more than any number from 0 through 9,999 and 10 less than or 100 less than any number from 100 through 10,000.

Develop understanding of fractions as numbers.	
1. Understand a fraction $1 / b$ as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a / b as the quantity formed by a parts of size $1 / \mathrm{b}$. (Grade 3 expectations in this domain are limited to fractions with denominators $2,3,4,6$, and 8)	Use concrete models and pictorial representations to demonstrate the meaning of fractions (proper and improper) as parts of a whole, parts of a set, and division by whole numbers through twelfths
2. Understand a fraction as a number on the number line; represent fractions on a number line diagram.	
a. Represent a fraction $1 / b$ on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size 1/b and that the endpoint of the part based at 0 locates the number $1 / \mathrm{b}$ on the number line.	
b. Represent a fraction a / b on a number line diagram by marking off a lengths $1 / \mathrm{b}$ from 0 . Recognize that the resulting interval has size a / b and that its endpoint locates the number a / b on the number line.	

```
3. Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size.
a. Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line.
b. Recognize and generate simple equivalent fractions, e.g., \(1 / 2=2 / 4,4 / 6=\) \(2 / 3)\). Explain why the fractions are equivalent, e.g., by using a visual fraction model.
c. Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form \(3=3 / 1\); recognize that \(6 / 1=6\); locate \(4 / 4\) and 1 at the same point of a number line diagram.
d. Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols >, \(=\), or <, and justify the conclusions, e.g., by using a visual fraction model.
```

Identify, name and use equivalent fractions with denominators 2,4 and 8

Measurement and Data

Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects.

1. Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram.
2. Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters
(I).Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem.

Tell time to the nearest minute using digital and analog clocks

Use elapsed time in half-hour increments, beginning on the hour or half-hour, to determine start, end, and elapsed time

Compare, order, and describe objects by various measurable attributes for area and volume/capacity

Select and use appropriate units of measure and measure to a required degree of accuracy (to the nearest $1 / 2$ unit)

Represent and interpret data.
3. Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and twostep "how many more" and "how many less" problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets.
4. Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units-whole numbers, halves, or quarters.

Use graphical representations including number lines, frequency tables, and pictographs to represent data

Compare data and interpret quantities represented on tables and different types of graphs (line plots, pictographs, and bar graphs), make predictions, and solve problems based on the information.

Estimate and measure length using fractional parts to the nearest $1 / 2$ unit in the Metric system

Geometric measurement: understand concepts of area and relate area to multiplication and to addition.

5. Recognize area as an attribute of plane figures and understand concepts of area measurement.
a. A square with side length 1 unit, called "a unit square," is said to have "one square unit" of area, and can be used to measure area.
b. A plane figure which can be covered without gaps or overlaps by n unit squares is said to have an area of \mathbf{n} square units.

Estimate and measure perimeter and area, using links, tiles, grid paper, geoboards, and dot paper

Measure areas by counting unit squares (square $\mathbf{c m}$, square m, square in, square ft , and improvised units).
6. Relate area to the operations of multiplication and addition.
a. Find the area of a rectangle with wholenumber side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths.
b. Multiply side lengths to find areas of rectangles with whole- number side lengths in the context of solving real world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning.
c. Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths a and $b+c$ is the sum of $\mathbf{a} \times \mathbf{b}$ and $\mathbf{a} \times \mathbf{c}$. Use area models to represent the distributive property in mathematical reasoning.
d. Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real world problems.

Apply models of multiplication (e.g., equalsized groups, arrays, area models, equal "jumps" on number lines and hundreds charts) and division (e.g., repeated subtraction, partitioning, and sharing) to solve problems

Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area measures.

8. Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters	Estimate and measure perimeter and area, using links, tiles, grid paper, geoboards, and dot paper
Reason with shapes and their attributes.	
1. Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.	Identify, describe, and classify: cube, sphere, prism, pyramid, cone, and cylinder in terms of the number and shape of faces, edges, and vertices. Describe, compare, analyze, and classify two-dimensional shapes by sides and angles
2. Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as $1 / 4$ of the area of the shape	Analyze the results of combining and subdividing circles, triangles, quadrilaterals, pentagons, hexagons, and octagons Use concrete models and pictorial representations to demonstrate the meaning of fractions (proper and improper) as parts of a whole, parts of a set, and division by whole numbers through twelfths

CROSSWALK COMMON CORE AERO

GRADE 4
In Grade 4, instructional time should focus on three critical areas:
(1) developing understanding and fluency with multi-digit multiplication, and developing understanding of dividing to find quotients involving multi-digit dividends;
(2) developing an understanding of fraction equivalence, addition and subtraction of fractions with like denominators, and multiplication of fractions by whole numbers;
(3) understanding that geometric figures can be analyzed and classified based on their properties, such as having parallel sides, perpendicular sides, particular angle measures, and symmetry.

AERO Crosswalk

Common Core	
Operations and Algebraic Thinking	
Use the four operations with whole numbers to solve problems.	
1. Interpret a multiplication equation as a	Generate and solve addition, subtraction,
comparison, e.g., interpret $35=5 \times 7$ as a	
statement that 35 is 5 times as many as 7	
and 7 times as many as 5 . Represent verbal	
whole numbers in practical situations	
statements of multiplicative comparisons as	
multiplication equations.	

Generate and analyze patterns.

5. Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself. For example, given the rule "Add 3 " and the starting number 1, generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even numbers. Explain informally why the numbers will continue to alternate in this way

Create, describe, and extend growing and repeating patterns with physical materials and symbols including numbers.

Identify and describe patterns resulting from operations involving even and odd numbers (such as even + even $=$ even)

Number and Operations in Base Ten

Generalize place value understanding for multi-digit whole numbers.

1. Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right. For example, recognize that $700 \div 70=$ 10 by applying concepts of place value and division.
2. Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.
3. Use place value understanding to round multi-digit whole numbers to any place.

Model and identify place value of each digit utilizing standard and expanded form through 9999.

Read and write numbers to at least 100,000

Use symbols (i.e., <, =, >) and models to compare and order whole numbers through 9,999

Round whole numbers to $1,000,000$ to any place value and round decimals to the nearest whole, $10^{\text {th }}$, or $100^{\text {th }}$ place.

Use place value understanding and properties of operations to perform multi-digit arithmetic.

4. Fluently add and subtract multi-digit	Add and subtract whole numbers(up to five whole numbers using the standard algorithm.
5. Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	Represent multiplication of two-digit by two digit numbers and describe how that representation connects to the related number sentence. Change Represent multiplication of up to four-digit by one digit numbers and describe how that representation connects to the related number sentence.

> 6. Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

Apply models for multiplication (e.g., equalsized groups, arrays, area models, equal intervals on the number line), place value, and properties of operations (commutative, associative, and distributive).

Change

Apply models for multiplication (e.g., equalsized groups, arrays, area models, equal intervals on the number line), place value, and properties of operations (commutative, associative, and distributive).

Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors

Number and Operations	
Extend understanding of fraction equivalence and ordering.	
1. Explain why a fraction a/b is equivalent to	Compare and order positive fractions (including positive mixed numbers) and a fraction $(n \times a) /(n \times b)$ by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.
2. Compare two fractions with different	
numerators and different denominators, e.g.,	
by creating common denominators or	
numerators, or by comparing to a	
benchmark fraction such as $1 / 2$. Recognize	
that	
comparisons are valid only when the two	
fractions refer to the same whole. Record the	
results of comparisons with symbols $>,=$, or	

> Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.
3. Understand a fraction a / b with $\mathrm{a}>1$ as a sum of fractions $1 / \mathrm{b}$. (Grade 4 expectations in this domain are limited to fractions with denominators 2, 3, 4, 5, 6, 8, 10, 12, and 100.)
a. Understand addition and subtraction of fractions as joining and separating parts referring to the same whole.
b. Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each
decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples:
$3 / 8=1 / 8+1 / 8+1 / 8 ; 3 / 8=1 / 8+2 / 8 ; 21 / 8=1$ $+1+1 / 8=8 / 8+8 / 8+1 / 8$.
c. Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction.
d. Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem (addition and subtraction with unlike denominators in general is not a requirement)

Compare and order positive fractions (including positive mixed numbers) and decimals on the number line, in number sentences, and in lists

In Grade 3

Use concrete models to add and subtract simple common fractions with the same denominator.

Understand decimal notation for fractions, and compare decimal fractions.

5. Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and 100.4 For example, express $3 / 10$ as $30 / 100$, and add $3 / 10+4 / 100=34 / 100$.	Write a fraction equivalent to a given fraction using common multiples. And simplify fractions using common factors.
6. Use decimal notation for fractions with denominators 10 or $\mathbf{1 0 0}$. For example, rewrite 0.62 as $62 / 100$; describe a length as 0.62 meters; locate 0.62 on a number line diagram.	Use models to connect and compare equivalent fractions and decimals.
7. Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual model.	Compare and order positive fractions(including positive mixed numbers) and decimals on the number line, in number sentences, and in lists

Measurement and Data

> Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit.

1. Know relative sizes of measurement units within one system of units including km, m , cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two- column table. For example, know that 1 ft is $\mathbf{1 2}$ times as long as 1 in . Express the length of a 4 ft snake as 48 in . Generate a conversion table for feet and inches listing the number pairs $(1,12),(2$, 24), (3, 36), ...	Estimate and convert units of measure for length, area, and weight with the same measurement system (metric)
2. Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.	Use appropriate tools to determine, estimate, and compare units for measurement of weight/m)ass, area, size of angle (using the benchmark angles $45^{\circ}, 90^{\circ}$, $180^{\circ}, 270^{\circ}$, and 360 , temperature, length, distance, and volume in metric systems and time in real-life situations.
3. Apply the area and perimeter formulas for rectangles in real world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor.	Measure length, area, weight , and temperature, to a required degree of accuracy in metric systems Describe relationships of rectangular area to numerical multiplication
Represent and interpret data.	
4. Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Solve problems involving addition and subtraction of fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection.	Compare data and interpret quantities represented on tables and graphs including line graphs, bar graphs, frequency tables, and stem-and-leaf plots to make predictions and solve

Geometric measurement: understand concepts of angle and measure angles.

5. Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement:
a. An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through $1 / 360$ of a circle is called a "one-degree angle," and can be used to measure angles.
b. An angle that turns through n one-degree angles is said to have an angle measure of n degrees.
6. Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure.
7. Recognize angle measure as additive. When an angle is decomposed into nonoverlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure.

Identify, draw, and describe horizontal, vertical, and oblique lines

Identify, draw, and classify angles, including straight, right, obtuse, and acute.
\qquad

Geometry			
Draw and identify lines and angles, and classify shapes by properties of their lines and			
angles.			
1. Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.	Identify, draw, and describe horizontal, vertical, and oblique lines		
	Identify, draw, and classify angles, including straight, right, obtuse, and acute.		
2. Classify two-dimensional figures based	Analyze and describe the similarities and differences between and among two on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. models using mathematical language		
Recognize right triangles as a category,			
and identify			
right triangles.			
3. Recognize a line of symmetry for a two-			
dimensional figure as a line across the			
figure such that the figure can be folded			
along the line into matching parts. Identify			
line-symmetric figures and draw lines of			
symmetry.		\quad	Identify shapes that are congruent, similar,
:---			
and/or symmetrical using a variety of			
methods including transformational motions	,		
:---			

CROSSWALK COMMON CORE AERO	
GRADE 5	
In Grade 5, instructional time should focus on three critical areas: (1) developing fluency with addition and subtraction of fractions, and developing understanding of the multiplication of fractions and of division of fractions in limited cases (unit fractions divided by whole numbers and whole numbers divided by unit fractions);	
Common Core	AERO
Operations and Algebraic Thinking	
Write and interpret numerical expressions.	
1. Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.	Devise a rule for an input/output function table, describing it in words and symbols
2. Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7 , then multiply by 2 " as $2 \times(8+7)$. Recognize that $3 \times(18932+921)$ is three times as large as $18932+921$, without having to calculate the indicated sum or product. Analyze patterns and relationships.	

3. Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3" and the starting number 0 , and given the rule "Add 6" and the
starting number 0 , generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so.

Identify a rule for a pattern involving addition, subtraction, or multiplication

Interpret and write a rule for a one operation function table
Ex. Adding 3

Number and Operations in Base Ten
Understand the place value system.

1. Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left.
2. Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10 . Use whole-number exponents to denote powers of 10.
3. Read, write, and compare decimals to thousandths.
a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., $347.392=3 \times 100+$ $4 \times 10+7 \times 1+3 \times(1 / 10)+9 \times(1 / 100)+2 \times$ (1/1000).
b. Compare two decimals to thousandths based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.
4. Use place value understanding to round decimals to any place.

Recall from memory multiplying and dividing by $\mathbf{1 0}, 100$, and $\mathbf{1 , 0 0 0}$

Recall from memory multiplying and dividing by $\mathbf{1 0}, \mathbf{1 0 0}$, and $\mathbf{1 , 0 0 0}$

Read, write, compare, and order all whole numbers, fractions, mixed numbers and decimals using multiple strategies (e.g. symbols, manipulatives, number line, and place value concepts)

Perform operations with multi-digit whole numbers and with decimals to hundredths.

5. Fluently multiply multi-digit whole	Add, subtract, multiply, and divide (with and without remainders) using non-negative rational numbers.
numbers using the standard algorithm.	Multiply four-digit numbers by two-digit numbers (including whole numbers and decimals).
6. Find whole-number quotients of whole	Add, subtract, multiply, and divide (with and without remainders) using non-negative numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, numbers. and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
7. Add, subtract, multiply, and divide	Model addition and subtraction of mixed numbers with and without regrouping and decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.
Multiply four-digit numbers by two-digit numbers (including whole numbers and decimals).	
	Change Multiply and four-digit numbers by two-digit
numbers (including whole numbers and	
decimals).	

Number and Operations	
Use equivalent fractions as a strategy to add and subtract fractions.	
1. Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2 / 3$ + $5 / 4=8 / 12+15 / 12=23 / 12$. (In general, $a / b+$ $c / d=(a d+b c) / b d$.	Model addition and subtraction of mixed numbers with and without regrouping and fractions with like and unlike denominators
2. Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an incorrect result $2 / 5$ + $1 / 2=3 / 7$, by observing that $3 / 7<1 / 2$	Model addition and subtraction of mixed numbers with and without regrouping and fractions with like and unlike denominators
Apply and extend previous understandings of multiplication and division to multiply and divide fractions.	
3. Interpret a fraction as division of the numerator by the denominator $(a / b=a \div b)$. Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret $3 / 4$ as the result of dividing 3 by 4 , noting that $3 / 4$ multiplied by 4 equals 3 , and that when 3 wholes are shared equally among 4 people each person has a share of size $3 / 4$. If 9 people want to share a 50 -pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie?	Identify and represent ratios as comparisons of part-to-part and part-towhole relationships, and solve problems involving ratios.

4. Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.
a. Interpret the product $(a / b) \times q$ as a parts of a partition of q
into b equal parts; equivalently, as the result of a sequence of operations $a \times q \div b$. For example, use a visual fraction model to show $(2 / 3) \times 4=8 / 3$, and create a story context for this equation. Do the same with $(2 / 3) \times(4 / 5)=8 / 15$. $(\ln$ general, $(a / b) \times(c / d)=$ ac/bd.)
b. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.
5. Interpret multiplication as scaling (resizing), by:
a. Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.
b. Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $a / b=$ $(n \times a) /(n \times b)$ to the effect of multiplying a / b by 1.
6. Solve real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem.

Multiply four-digit numbers by two-digit numbers (including whole numbers and decimals).

Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value

Model addition and subtraction of mixed numbers with and without regrouping and fractions with like and unlike denominators

Change

Multiply four-digit numbers by two-digit numbers (including whole numbers, and decimals).

Add, subtract, multiply, and divide, fractions and decimals to hundredths, using concrete models or drawings and strategies based on place value
7. Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. (Students able to multiply fractions in general can develop strategies to divide fractions in general, by reasoning about the relationship between multiplication and division. But division of a fraction by a fraction is not a requirement at this grade.)
a. Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for $(1 / 3) \div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $(1 / 3) \div 4=1 / 12$ because $(1 / 12) \times 4=1 / 3$.
b. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div(1 / 5)$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div(1 / 5)=20$ because $20 \times(1 / 5)$ $=4$.
c. Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many 1/3-cup servings are in 2 cups of raisins?

Multiply four-digit numbers by two-digit numbers (including whole numbers and decimals).

Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value

Model addition and subtraction of mixed numbers with and without regrouping and fractions with like and unlike denominators

Change

Multiply four-digit numbers by two-digit numbers (including whole numbers, and decimals).

Add, subtract, multiply, and divide, fractions and decimals to hundredths, using concrete models or drawings and strategies based on place value

Measurement and Data	
Convert like measurement units within a given measurement system.	
1. Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems.	Estimate and convert units of measure for weight and volume/capacity within the same measurement system (metric)
Represent and interpret data.	
2. Make a line plot to display a data set of measurements in fractions of a unit (1/2, $1 / 4,1 / 8)$. Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally.	Use a variety of graphical representations including including line graphs, stem-andleaf plots, histograms, and box-and-whisker plots to organize and represent data
Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.	
3. Recognize volume as an attribute of solid figures and understand concepts of volume measurement. a. A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume. b. A solid figure which can be packed without gaps or overlaps using n unit cubes is said to have a volume of \boldsymbol{n} cubic units. 4. Measure volumes by counting unit cubes, using cubic cm , cubic in, cubic ft, and improvised units.	Measure volume and weight to a required degree of accuracy in the metric systems

5. Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume.
a. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication.
b. Apply the formulas $\mathbf{V}=\mathbf{I} \times \mathbf{w} \times \mathrm{h}$ and $\mathbf{V}=\mathbf{b}$ $\times \mathrm{h}$ for rectangular prisms to find volumes of right rectangular prisms with whole- number edge lengths in the context of solving real world and mathematical problems.
c. Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real world problems.

Measure volume and weight to a required degree of accuracy in the metric systems

Geometry

Graph points on the coordinate plane to solve real-world and mathematical problems.

1. Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the
coordinates correspond (e.g., x-axis and x coordinate, y -axis and y -coordinate).
2. Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.

Identify, draw, label, and describe planes, parallel lines, intersecting lines, and perpendicular lines

Graph coordinates representing geometric shapes in the first quadrant

Classify two-dimensional figures into categories based on their properties.
3. Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles.
4. Classify two-dimensional figures in a hierarchy based on properties.

Analyze and describe the characteristics of symmetry relative to classes of polygons (parallelograms, triangles, etc.).

GROSSWALK COMMO
GRADE
In Grade 6, instructional time should focus on
four critical areas:
(1) connecting ratio and rate to whole number
multiplication and division and using concepts
of ratio and rate to solve problems;
(2) completing understanding of division of
fractions and extending the notion of number
to the system of rational numbers, which
includes negative numbers;
(3) writing, interpreting, and using expressions
and equations; and
(4) developing understanding of statistical
thinking.

AERO Crosswalk

Common Core	AERO
Ratios and Proportional Relationships	
Understand ratio concepts and use ratio reasoning to solve problems.	
1. Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, "The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak." "For every vote candidate A received, candidate C received nearly three votes."	Compare quantities and solve problems using ratios, rates and percents.
2. Understand the concept of a unit rate a / b associated with a ratio a:b with $b \neq 0$, and use rate language in the context of a ratio relationship. For example, "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is $3 / 4$ cup of flour for each cup of sugar." "We paid $\$ 75$ for 15 hamburgers, which is a rate of $\$ 5$ per hamburger."1	Write and apply ratios in mathematical and practical situations involving measurement and monetary conversions

Represent percents in various forms using numbers, pictures, models, or circle graphs and solve problems involving percentages. Greater than 100 and less than 1.

The Number System

Apply and extend previous understandings of multiplication and division to divide fractions by fractions.

1. Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for (2/3) (3/4) and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2 / 3) \div(3 / 4)=8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. (In general, $(a / b) \div(c / d)=a d / b c$.) How much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many $3 / 4$-cup servings are in $2 / 3$ of a cup of yogurt? How wide is a rectangular strip of and with length $3 / 4 \mathrm{mi}$ and area $1 / 2$ square mi ?	Apply the inverse relationship between multiplication and division to make sense of procedures for multiplying and dividing fractions and justify why they work
Compute fluently with multi-digit numbers and find common factors and multiples.	
2. Fluently divide multi-digit numbers using the standard algorithm.	Apply the inverse relationship between multiplication and division to make sense of procedures for multiplying and dividing fractions and justify why they work
3. Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.	Model addition and subtraction of integers with physical materials and the number line. Model addition and subtraction of mixed numbers with and without regrouping and fractions with like and unlike denominators

$$
\begin{aligned}
& \text { 4. Find the greatest common factor of two } \\
& \text { whole numbers less than or equal to } 100 \\
& \text { and the least common multiple of two whole } \\
& \text { numbers less than or equal to } 12 \text {. Use the } \\
& \text { distributive property to express a sum of } \\
& \text { two whole numbers } 1-100 \text { with a common } \\
& \text { factor as a multiple } \\
& \text { of a sum of two whole numbers with no } \\
& \text { common factor. For example, express } 36+8 \\
& \text { as } 4(9+2) \text {. }
\end{aligned}
$$

Identify the greatest common factor for a set of whole numbers.

Apply and extend previous understandings of numbers to the system of rational numbers.
5. Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.
6. Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.
a. Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., $-(-3)=3$, and that 0 is its own opposite.
b. Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes.
c. Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane.

Compare positive fractions, decimals, and positive and negative integers using symbols (i.e., <, =, >) and number lines

Read, write, compare, and order integers using multiple strategies (e.g., symbols, manipulatives, number line).
7. Understand ordering and absolute value of rational numbers.
a. Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram. For example, interpret $-3>-7$ as a statement that -3 is located to the right of -7 on a number line oriented from left to right.
b. Write, interpret, and explain statements of order for rational numbers in real-world contexts. For example, write $-3^{\circ} \mathrm{C}>-7^{\circ} \mathrm{C}$ to express the fact that $-3^{\circ} \mathrm{C}$ is warmer than $7{ }^{\circ} \mathrm{C}$.
c. Understand the absolute value of a rational number as its distance from 0 on the number line; interpret absolute value as magnitude for a positive or negative quantity in a real-world situation. For example, for an account balance of -30 dollars, write $|-30|=30$ to describe the size of the debt in dollars.
d. Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than $\mathbf{- 3 0}$ dollars represents a debt greater than 30 dollars.
8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.

Explain the meaning and relationship between absolute value and opposites.

Draw and label the components of the coordinate plane; i.e., coordinates, quadrants, origin, x - and y-axes

Expressions and Equations

Apply and extend previous understandings of arithmetic to algebraic expressions.

1. Write and evaluate numerical
expressions involving whole-number
exponents.
2. Write, read, and evaluate expressions in which letters stand for numbers.
a. Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation "Subtract y from 5" as $5-y$. b. Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression $2(8+7)$ as a product of two factors; view $(8+7)$ as both a single entity and a sum of two terms.
c. Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole- number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas $\mathbf{V}=\mathrm{s} 3$ and A = $6 \mathbf{s} 2$ to find the volume and surface area of a cube with sides of length $s=1 / 2$.

Evaluate formulas and algebraic expressions using whole number values

Formulate algebraic expressions, equations, and inequalities to reflect a given situation.

Determine the rule, output or input; given an input/output model using one operation, write an algebraic expression for the rule and use to identify other input/output values.

Represent the relationship in an inputoutput situation using a simple equation, graph, table, or word description

Write simple expressions and equations using variables to represent mathematical situations

$$
\begin{aligned}
& \text { 3. Apply the properties of operations to } \\
& \text { generate equivalent expressions. For } \\
& \text { example, apply the distributive property to } \\
& \text { the expression } 3(2+x) \text { to produce the } \\
& \text { equivalent expression } 6+3 x \text {; apply the } \\
& \text { distributive property to the expression } 24 x+ \\
& \text { 18y to produce the equivalent expression } 6 \\
& \text { (} 4 x+3 y \text {); apply properties of operations to } y \\
& +y+y \text { to produce the equivalent expression } \\
& 3 y \text {. } \\
& \hline \text { 4. Identify when two expressions are } \\
& \text { equivalent (i.e., when the two expressions } \\
& \text { name the same number regardless of which } \\
& \text { value is substituted into them). For } \\
& \text { example, the expressions } y+y+y \text { and } 3 y \\
& \text { are equivalent because they name the same } \\
& \text { number regardless of which number } y \\
& \text { stands for. }
\end{aligned}
$$

Determine the rule, output or input; given an input/output model using one operation, write an algebraic expression for the rule and use to identify other input/output values.

Represent the relationship in an inputoutput situation using a simple equation, graph, table, or word description

Reason about and solve one-variable equations and inequalities.
5. Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.
6. Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.
7. Solve real-world and mathematical problems by writing and solving equations of the form $\mathrm{x}+\mathrm{p}=\mathrm{q}$ and $\mathrm{px}=\mathrm{q}$ for cases in which p, q and x are all nonnegative rational numbers.
8. Write an inequality of the form $x>c$ or $x<$ c to represent a constraint or condition in a real-world or mathematical problem.
Recognize that inequalities of the form $x>c$ or $x<c$ have infinitely many solutions; represent solutions of such inequalities on number line diagrams.

Solve simple equations using guess-andcheck, diagrams, properties, or inspection, explaining the process used.

Change

Solve simple equations and inequalities using guess-and-check, diagrams, properties, or inspection, explaining the process used.

Formulate algebraic expressions, equations, and inequalities to reflect a given situation.

variables.

Abstract

9. Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation $d=65$ to represent the relationship between distance and time.

Geometry

Solve real-world and mathematical problems involving area, surface area, and volume.

$\left.$| 1. Find the area of right triangles, other | |
| :--- | :--- |
| triangles, special quadrilaterals, and | |
| polygons by composing into rectangles or | |
| decomposing into triangles and other | |
| shapes; apply these techniques in the | |
| context of solving real-world and | |
| mathematical problems. | Describe the characteristics of right, acute,
 obtuse, scalene, equilateral, and isosceles
 triangles | | Change |
| :--- |
| Describe the characteristics of right, acute, |
| obtuse, scalene, equilateral, and isosceles |
| triangles and determine the area of a right |
| triangle | \right\rvert\, | |
| :--- |

4. Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving realworld and mathematical problems.	Make a two-dimensional drawing of a threedimensional figure Change Make a two-dimensional drawing of a threedimensional figure to visualize and solve problems; e.g., those involving surface area and volume
Statistics and Probability	
Develop understanding of statistical variability.	
1. Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, "How old am I?" is not a statistical question, but "How old are the students in my school?" is a statistical question because one anticipates variability in students' ages.	Formulate questions that guide the collection of data
2. Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.	Analyze and solve application problems involving measures of central tendency (mean, median, mode) and dispersion (range) from data, graphs, tables, and experiments use appropriate technology to
3. Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.	compare two sets of data Interpret and explain line graphs, double bar graphs, frequency plots, stem-and-leaf plots, histograms, and box-and-whisker plots.

Summarize and describe distributions.			
4. Display numerical data in plots on a	Analyze various representations of a set of data to draw conclusions and make predictions.		
number line, including dot plots,			
histograms, and box plots.		\quad	Interpret and explain line graphs, double bar
:---			
graphs, frequency plots, stem-and-leaf			
plots, histograms, and box-and-whisker			
plots.			
5. Summarize numerical data sets in			
relation to their context, such as by:			
a. Reporting the number of observations.			
b. Describing the nature of the attribute			
under investigation,			
including how it was measured and its			
units of measurement.			
c. Giving quantitative measures of center			
(median and/or mean) and variability			
(interquartile range and/or mean absolute			
deviation), as well as describing any overall			
pattern and any striking deviations from the			
overall pattern with reference to the context			
in which the data were gathered.			
d. Relating the choice of measures of			
center and variability to the shape of the			
data distribution and the context in which			
the data were gathered.			

CROSSWALK COMMON CORE AERO
In Grade 7, instructional time should focus on four critical areas:
(1) developing understanding of and applying proportional relationships;
(2) developing understanding of operations with rational numbers and working with
expressions and linear equations;
(3) solving problems involving scale drawings and informal geometric constructions, and
working with two- and three-dimensional shapes to solve problems involving area, surface
area, and volume; and

(4) drawing inferences about populations based on samples.

Common Core	Ratios and Proportional Relationships
Analyze proportional relationships and use them to solve real-world and mathematical 	
1. Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks $1 / 2$ mile in each $1 / 4$ hour, compute the unit rate as the complex fraction $1 / 2 / 1 / 4$ miles per hour, equivalently 2	Solve problems using ratios, rates and piles per hour

2. Recognize and represent proportional relationships between quantities.
a. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.
b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.
c. Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $\mathbf{t}=\mathrm{pn}$.
d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.
3. Use proportional relationships to solve multistep ratio and percent. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.

Write and apply proportions to solve mathematical and practical problems involving measurement and monetary conversions

The Number System		
Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.		
1. Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram. a. Describe situations in which opposite quantities combine to make 0 . For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged. b. Understand $\mathbf{p}+\mathrm{q}$ as the number located a distance \|q	from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts.	Solve equations that represent algebraic and real-world problems using multiple methods including the real number properties.
c. Understand subtraction of rational numbers as adding the additive inverse, $\mathrm{p}-\mathrm{q}=\mathrm{p}+(-\mathrm{q})$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts. d. Apply properties of operations as strategies to add and subtract rational numbers.		

> 2. Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.
> a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as (-1)(-1) = 1 and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.
> b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then - (p/q) = (-p)/q = p/(-q). Interpret quotients of rational numbers by describing real- world contexts.
> c. Apply properties of operations as strategies to multiply and divide rational numbers.
> d. Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0 s or eventually repeats.
> 3. Solve real-world and mathematical problems involving the four operations with rational numbers.

Use the concepts of number theory, including prime and composite numbers, factors, multiples, and the rules of divisibility to solve problems

Use properties of operations to generate equivalent expressions.	
1. Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.	Use the order of operations to simplify and/or evaluate whole numbers (including exponents and grouping symbols).
2. Understand that rewriting an expression in	
different forms in a problem context can	
shed light on the problem and how the	
quantities in it are related. For example, a +	
0.05a $1.05 a$ means that "increase by 5% " is	
the same as "multiply by $1.05 . "$	

4. Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm . Its length is 6 cm . What is its width?
b. Solve word problems leading to inequalities of the form $\mathrm{px}+\mathrm{q}>\mathrm{r}$ or $\mathrm{px}+\mathrm{q}<$ r, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example: As a salesperson, you are paid $\$ 50$ per week plus $\$ 3$ per sale. This week you want your pay to be at least $\$ 100$. Write an inequality for the number of sales you need to make, and describe the solutions.

Solve and graphically represent equations and inequalities in one variable with integer solutions

Geometry	
Draw, construct, and describe geometrical figures and describe the relationships between them.	
1. Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.	Make a model of a three-dimensional figure from a two-dimensional drawing.
2. Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.	Classify triangles based on side and angle measurements; Change Classify and construct triangles based on side and angle measurements; Construct and identify congruent angles, parallel lines, and perpendicular lines
3. Describe the two-dimensional figures that result from slicing three- dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids. Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.	Construct two-dimensional representations of three-dimensional objects. Build and sketch three-dimensional solids; e.g., using nets, manipulatives.
4. Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.	Estimate and compare corresponding units of measure for area and volume/capacity metric systems Select and use appropriate tools and units to determine the measurements needed for calculating perimeter, circumference, area, surface area, and volume

5. Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.	Find missing angle measurements for parallel lines cut by a transversal(s) and for a vertex of a polygon.
6. Solve real-world and mathematical problems involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.	Use formulas and strategies, such as decomposition, to compute the perimeter and area of triangles, parallelograms, trapezoids, the circumference and area of circles, and find the area of more complex shapes.
Statistics and Probability	
Use random sampling to draw inferences about a population.	
1. Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences. 2. Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. For example, estimate the mean word length in a book by randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be.	Identify a real life situation using statistical measures (mean, median, mode, range, outliers) overtime, make a hypothesis as to the outcome; design and implement a method to collect, organize and analyze data; analyze the results to make a conclusion; evaluate the validity of the hypothesis based upon collected data, design a mode of presentation using words, graphs, models, and/or tables

Draw informal comparative inferences about two populations.

3. Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. For example, the mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the variability (mean absolute deviation) on either team; on a dot plot, the separation between the two distributions of heights is noticeable.
4. Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. For example, decide whether the words in a chapter of a seventh-grade science book are generally longer than the words in a chapter of a fourth-grade science book.

Identify a real life situation using statistical measures (mean, median, mode, range, outliers) overtime, make a hypothesis as to the outcome; design and implement a method to collect, organize and analyze data; analyze the results to make a conclusion; evaluate the validity of the hypothesis based upon collected data, design a mode of presentation using words, graphs, models, and/or tables

Investigate chance processes and develop, use, and evaluate probability models.

5. Understand that the probability of a	Determine theoretical probability of an event, chance event is a number between 0 and 1 make and test predictions through
that expresses the likelihood of the event	
experimentation.	
occurring. Larger numbers indicate greater	
likelihood. A probability near 0 indicates an	
unlikely event, a probability around $1 / 2$	
indicates an event that is neither unlikely	
nor likely, and a probability near 1	
indicates a	
likely event.	
6. Approximate the probability of a chance	
event by collecting data on the chance	Determine and explain whether a real-world situation involves permutations or combinations, then use appropriate process that produces it and observing its long-run relative frequency, and predict the technology to solve the problem. approximate relative frequency given the
probability. For example, when rolling a	
number cube 600 times, predict	
that a 3 or 6 would be rolled roughly 200	
times, but probably not exactly 200 times.	

7. Develop a probability model and use it to	Determine theoretical probability of an event, make and test predictions through		
find probabilities of events. Compare			
probabilities from a model to observed			
frequencies; if the agreement is not good,			
explain possible sources of the		\quad	Determine and explain whether a real-world
:---			
discrepancy.			
situation involves permutations or			
combinations, then use appropriate			
technology to solve the problem.			
assigning equal			
probability to all outcomes, and use the			
model to determine			
probabilities of events. For example, if a			
student is selected at random from a class,			
find the probability that Jane will be			
selected and the probability that a girl will			
be selected.			
b. Develop a probability model (which may			
not be uniform) by observing frequencies			
in data generated from a chance process.			
For example, find the approximate			
probability that a spinning penny will land			
heads up or that a tossed paper cup will			
land open-end down. Do the outcomes for			
the spinning penny appear to be equally			
likely based on the observed frequencies?			

8. Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.
a. Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs.
b. Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., "rolling double sixes"), identify the outcomes in the sample space which compose the event.
c. Design and use a simulation to generate frequencies for compound events. For example, use random digits as a simulation tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that it will take at least 4 donors to find one with type A blood?

Determine theoretical probability of an event, make and test predictions through experimentation.

Determine and explain whether a real-world situation involves permutations or combinations, then use appropriate technology to solve the problem.

CROSSWALK COMMON CORE AERO	
GRADE 8	
In Grade 8, instructional time should focus on three critical areas: (1) formulating and reasoning about expressions and equations, including modeling an association in bivariate data with a linear equation, and solving linear equations and systems of linear equations;	
Common Core	AERO
The Number System	
Know that there are numbers that are not rational, and approximate them by rational numbers.	
1. Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.	Analyze, describe and compare the characteristics of rational and irrational numbers.
2. Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., $\pi 2$). For example, by truncating the decimal expansion of $\sqrt{ } 2$, show that $\sqrt{ } 2$ is between 1 and 2 , then between 1.4 and 1.5, and explain how to continue on to get better approximations.	Represent and compare rational and irrational numbers symbolically and on a number line.

\qquad

Expressions and Equations	
Work with radicals and integer exponents.	
1. Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $32 \times 3-5=3-3=$ $1 / 33=1 / 27$.	Recognize and appropriately use exponential and scientific notation.
2. Use square root and cube root symbols to represent solutions to equations of the form $x 2=p$ and $x 3=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{ } 2$ is irrational.	Use rational and irrational numbers to solve real-world and mathematical problems.
3. Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. For example, estimate the population of the United States as 3×108 and the population of the world as 7×109, and determine that the world population is more than 20 times larger.	
4. Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.	Represent numbers using scientific notation in mathematical and practical situations.
Understand the connections between proportional relationships, lines, and linear equations.	Solve contextual problems using ratios, rates, or percents and verify the reasonableness of the solution.

5. Graph proportional relationships,	Solve contextual problems using ratios, interpreting the unit rate as the slope of the graphes, or percents and verify the graph. Compare two different proportional reasonableness of the solution. relationships represented in different ways.		
For example, compare a distance-time			
graph to a distance-time equation to			
determine which of two moving objects has			
greater speed.			Apply ratios and proportions to calculate
:---			
rates and solve mathematical and practical			
problems using indirect measure.			
6. Use similar triangles to explain why the			
slope m is the same between any two			
distinct points on a non-vertical line in the			
coordinate plane; derive the equation $y=$			
$m x$ for a line through the origin and the			
equation $y=m x+b$ for a line intercepting			
the vertical axis at b.			

Analyze and solve linear equations and pairs of simultaneous linear equations.

7. Solve linear equations in one variable.
a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x=a, a=a$, or $\mathrm{a}=\mathrm{b}$ results (where a and b are different numbers).
b. Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.

Solve linear equations and inequalities and represent the solution graphically

```
8. Analyze and solve pairs of simultaneous linear equations.
a. Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.
b. Solve systems of two linear equations in two variables
algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, \(3 x+2 y=5\) and \(3 x+2 y=6\) have no solution because \(3 x+2 y\) cannot simultaneously be 5 and 6.
c. Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.
```

Functions	
Define, evaluate, and compare functions.	
1. Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.	Identify, model, and describe linear functions Translate among verbal descriptions, graphic, tabular, and algebraic representations of mathematical situations
2. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.	
3. Interpret the equation $\mathbf{y}=\mathbf{m x + b}$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function $A=s 2$ giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), $(2,4)$ and $(3,9)$, which are not on a straight line.	Solve linear equations and inequalities and represent the solution graphically
Use functions to model relationships between quantities.	Identify, model, and describe linear functions
4. Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.	Translate among verbal descriptions, graphic, tabular, and algebraic representations of mathematical situations

5. Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.	Translate among verbal descriptions, graphic, tabular, and algebraic representations of mathematical situations			
Geometry				
Understand congruence and similarity using physical models, transparencies, or				
geometry software.		\quad	1. Verify experimentally the properties of	
:---	:---			
rotations, reflections, and translations:	Draw the results of a combination of transformations in the coordinate plane; i.e., reflections, rotations, and translations			
a. Lines are taken to lines, and line				
segments to line segments of the same				
length.				
b. Angles are taken to angles of the same				
measure.				
c. Parallel lines are taken to parallel lines.				
2. Understand that a two-dimensional figure				
is congruent to another if the second can				
be obtained from the first by a sequence of				
rotations, reflections, and translations;				
given two congruent figures, describe a				
sequence that exhibits the congruence				
between them.	Draw the results of a combination of transformations in the coordinate plane; i.e., reflections, rotations, and translations			

3. Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.	Draw the results of a combination of transformations in the coordinate plane; i.e., reflections, rotations, and translations
4. Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.	Use two-dimensional representations (nets) of three-dimensional objects to describe objects from various perspectives. Apply the properties of equality and proportionality To find missing attributes of congruent or similar shapes
5. Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal,	Find and verify the sum of the measures of interior angles of triangles
and the angle-angle criterion for similarity	
of triangles. For example, arrange three	
copies of the same triangle so that	
the sum of the three angles appears to	
form a line, and give an argument in terms	
of transversals why this is so.	

Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.

9. Know the formulas for the volumes of	Use formulas and/or appropriate measuring cones, cylinders, and spheres and use them to find length and angle measures (to
problems.	appropriate levels of precision), perimeter, area, volume, and surface area of polygons, circles, spheres, cones, pyramids, and composite or irregular figures.
Investigate patterns of association in bivariate data.	
1. Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. 2. Know that straight lines are widely used to organize, display, and read data. to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.	

3. Use the equation of a linear model to	
solve problems in the context of bivariate	
measurement data, interpreting the slope	
and intercept. For example, in a linear model	
for a biology experiment, interpret a slope of	
1.5 cm/hr as meaning that an additional	
hour of sunlight each day is	
associated with an additional 1.5 cm in	
mature plant height.	Calculate slope, midpoint, and distance using equations and formulas
4. Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects.	Draw inferences, make conjectures and construct convincing arguments involving different effects that changes in data values have on measures of central tendency misuses of statistical or numeric information, based on data analysis of seative frequencies calculated for rows or columns to describe possible association different sets of data between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to
Select and apply appropriate measures of data distribution using interquartile range and central tendency	

AERO Crosswalk

Alignment
 of
 AERO High School Proposed Standards
 to
 The Common Core

Key

A-1 refers to Algebra I standards
A-2 refers to Algebra 2 standards
Geom refers to Geometry standards
Precalculus refers to Precalculus standards

NOTE
There is a difference between the intent of the AERO documents and the Common Core. The AERO document was developed from the standpoint of assessment and uses performance indicators and reflects the math all students should know, understand, and be able to do. . The Common Core was developed from the standpoint of instruction and not only includes the math required of all students but also describes additional mathematics that students should learn to pursue careers and majors in science, technology, engineering and mathematics (STEM) fields.

Standards beyond the college and career readiness level that are necessary for STEM careers are prefixed with a symbol STEM, as in this example

The AERO standards address most of the Common Core and the exceptions have been noted. The final AERO standards for the high school will include a clarifying document that will incorporate the language of the Common Core.

| Topic | Concept | Common Core | AERO |
| :--- | :--- | :--- | :--- | :--- |
| | | Extend the
 properties of
 exponents to
 rational
 exponents | 1. Explain how the
 definition of the meaning of
 rational exponents follows
 from extending the
 properties of integer
 exponents to those values,
 allowing for a notation for
 radicals in terms of rational
 exponents. For example, we
 define $51 / 3$ to be the cube
 root of 5 because we want
 (51/3)3 = $5(1 / 3) 3$ to hold, so
 (51/3)3 must equal 5. |

[^0].

AERO Crosswalk

Topic	Concept	Comm Core	AERO	
		Reason quantitatively and use units to solve problems	1. Use units as a way to understand problems and to guide the solution of multi- step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	See AERO Process Standards

Topic	Concept	Common Core		AERO
	$\begin{aligned} & \text { む } \\ & \text { 首 } \\ & \text { Z } \end{aligned}$	Represent complex numbers and their operations on the complex plane	4．（＋）Represent complex numbers on the complex plane in rectangular and polar form（including real and imaginary numbers），and explain why the rectangular and polar forms of a given complex number represent the same number．	PreCalculus 4.1 a Define and use polar coordinates and relate polar coordinates to Cartesian coordinates ． PreCalculus 4.1 b Represent equations given in Cartesian coordinates in terms of polar coordinates． PreCalculus 4.1 c Graph equations in the polar coordinate plane． PreCalculus 4.1 d Define complex numbers，convert complex numbers to polar form and multiply complex numbers in polar form
	$\begin{aligned} & \text { 合 } \\ & \text { U } \\ & \text { E } \end{aligned}$		5．（＋）Represent addition， subtraction，multiplication， and conjugation of complex numbers geometrically on the complex plane；use properties of this representation for computation．For example，（－ $1+\sqrt{3}$ i）$)^{3}=8$ because $(-1+$ $\sqrt{3}$ i）has modulus 2 and argument 120° ． 6．（＋）Calculate the distance between numbers in the complex plane as the modulus of the difference， and the midpoint of a segment as the average of the numbers at its endpoints．	A－2 7.3 a Define，add，subtract， multiply and divide complex numbers．Represent complex numbers and the addition， subtraction and absolute value of complex numbers in the complex plane．

AERO Crosswalk

Topic	Concept	Common Core		AERO
		Use complex numbers in polynomial identities and equations	7. Solve quadratic equations with real coefficients that have complex solutions. 8. (+) Extend polynomial identities to the complex numbers. For example, rewrite $\mathrm{x}^{2}+4$ as $(\mathrm{x}+2 \mathrm{i})(\mathrm{x}-$ 2i). 9. (+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials	A-2 7.3 b Solve quadratic equations in the complex number system.

AERO Crosswalk

Topic	Concept	Common Core		AERO	
		Represent and model with vector quantities.	1. (+) Recognize vector quantities as having both magnitude and direction. Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes (e.g., v, \|v	, \|v\|, v). 2. (+) Find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point. 3. (+) Solve problems involving velocity and other quantities that can be represented by vectors.	STEM

AERO Crosswalk

Topic	Concept	Comon Core		AERO
		Perform operations on vectors.	4. (+) Add and subtract vectors. Add vectors end-to-end, component-wise, and by the parallelogram rule.	

Topic	Concept	Common Core		AERO	
		Perform operations on vectors.	5. Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar multiplication component-wise, e.g., as $c(v x, v y)=(c v x, c v y)$. Compute the magnitude of a scalar multiple cv using \\|cv\| $=\|\mathrm{c}\| \mathrm{v}$. Compute the direction of cv knowing that when $\|\mathrm{c}\| \mathrm{v}$ $\neq 0$, the direction of cv is either along v (for $\mathrm{c}>0$) or against v (for $\mathrm{c}<0$).	STEM	

AERO Crosswalk

Topic	Concept	Common Core		AERO
		Perform operations on matrices and use matrices in applications.	6. (+) Use matrices to represent and manipulate data, e.g., to represent payoffs or incidence relationships in a network.	A-1 7.4 a Understand the relationship between a solution of a pair of linear equations in two variables and the graphs of the corresponding lines. Solve
			7. (+) Multiply matrices by scalars to produce new matrices, e.g., as when all of the payoffs in a game are doubled	two variables by graphing, substitution or elimination. A-2 7.2 a Solve systems of linear equations and inequalities in three variables by
			8. (+) Add, subtract, and multiply matrices of appropriate dimensions.	7.2b Solve problems that can be modeled using systems of linear equations in three
			9. (+) Understand that, unlike multiplication of numbers, matrix multiplication for square matrices is not a commutative operation, but still satisfies the associative and distributive properties.	solutions and determine whether the solutions are reasonable. Matrices are STEM

AERO Crosswalk

Topic	Concept	Common Core	AERO	
		Perform operations on matrices and use matrices in applications.	10. (+) Understand that the zero and identity matrices play a role in matrix addition and multiplication similar to the role of 0 and 1 in the real numbers. The determinant of a square matrix is nonzero if and only if the matrix has a multiplicative inverse	A-2 7.2 a Solve systems of linear equations and inequalities in three variables by substitution and elimination.
7.2b Solve problems that can be modeled using systens of linear equations in three variables, interpret the solutions and determine whether the solutions are reasonable.				

AERO Crosswalk

Topic	Concept	Common Core		AERO
		Interpret the structure of expressions.	1. Interpret expressions that represent a quantity in terms of its context. Interpret parts of an expression, such as terms, factors, and coefficients. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $\mathrm{P}(1+\mathrm{r}) \mathrm{n}$ as the product of P and a factor not depending on P . 2. Use the structure of an expression to identify ways to rewrite it. For example, see $x^{4}-y^{4}$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$, thus recognizing it as a difference of squares that can be factored as $\left(\mathrm{x}^{2}-\right.$ $\left.y^{2}\right)\left(x^{2}+y^{2}\right)$.	A-1 7.5 a Use the laws of exponents for variables with exponents. Multiply, divide and find powers of variables with exponents.

AERO Crosswalk

Topic	Concept	Common Core		AERO
	Seeking Structure in Expressions	Write expressions in equivalent forms to solve problems.	3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. a. Factor a quadratic expression to reveal the zeros of the function it defines. b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. c. Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15^{t} can be rewritten as $\left(1.15^{1 / 12}\right)^{12 t} \approx$ $1.012^{12 t}$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.	A-1 7.6 b Solve quadratic equations in the real number system with real number solutions by factoring, by completing the square and by using the quadratic formula. A-2 7.6 c Solve exponential and logarithmic equations. A-2 7.6 d Solve problems that can be modeled using exponential and logarithmic equations, interpret the solutions, and determine whether the solutions are reasonable. Use technology as appropriate.
			4. Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments.	A-2 7.7 d Solve problems involving applications that can be modeled using sequences and finite arithmetic and geometric series. Interpret the solutions and determine whether the solutions are reasonable using spreadsheets as appropriate.
AERO Crosswalk 99				

Topic	Concept	Common Core	AERO
	Perform arithmetic operations on polynomials	1. Understand that polynomials form a system analogous to the integers, namely, they are closed under operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.	A-2 l.4 e Perform arithmetic operations, including long division and division with remainders, on polynomials by others of equal or lower degree.

Topic	Concept	Common Core		AERO
		Use polynomial identities to solve problems.	4. Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity (x^{2} $\left.+y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)^{2}+(2 x y)^{2}$ can be used to generate Pythagorean triples.	A-2 7.4 a Factor polynomials completely and solve polynomial equations by factoring
			5. (+) Know and apply the Binomial Theorem for the expansion of $(x+y) n$ in powers of x and y for a positive integer n , where x and y are any numbers, with coefficients determined for example by Pascal's Triangle. 1	A-2 7.4 d Use the binomial theorem to expand binomial expressions raised to positive integer powers.

AERO Crosswalk

Topic	Concept	Common Core		AERO
$\begin{aligned} & \stackrel{4}{4} \\ & \frac{1}{M} \\ & \underset{y y y y}{c} \\ & \frac{1}{4} \end{aligned}$		Rewrite rational expressions.	6. Rewrite simple rational expressions in different forms; write $a^{(} x^{\prime} / b_{(x)}$ in the form $\mathrm{q}(\mathrm{x})+\mathrm{r}^{\left(\mathrm{x}^{\prime} / \mathrm{b}_{(} \mathrm{x}\right) \text {, where }}$ $\mathrm{a}(\mathrm{x}), \mathrm{b}(\mathrm{x}), \mathrm{q}(\mathrm{x})$, and $\mathrm{r}(\mathrm{x})$ are polynomials with the degree of $r(x)$ less than the degree of $\mathrm{b}(\mathrm{x})$, using inspection, long division, or, for the more complicated examples, a computer algebra system. 7. (+) Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions	A-2 7.5 b Add, subtract, multiply, divide, reduce and evaluate rational expressions with polynomial denominators. Simplify rational expressions, including expressions with negative exponents in the denominator.

AERO Crosswalk

[^1]| Topic | Concept | Common Core | | AERO |
| :--- | :--- | :--- | :--- | :--- |
| | | Understand
 solving
 equations as a
 process of
 reasoning and
 explain the | 1. Explain each step in
 solving a simple equation
 as following from the
 equality of numbers
 asserted at the previous
 step, starting from the
 assumption that the original
 equation has a solution.
 Construct a viable
 argument to justify a
 solution method. | A-2
 7.5 e Solve equations that
 contain radical expressions
 and identify extraneous roots
 when they occur. |

AERO Crosswalk

Topic	Concept	Common Core		AERO
		Solve equations and inequalities in one variable.	3. Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.	A-1 7.2 d Solve problems that can be modeled using linear equations and inequalities, interpret the solutions and determine whether the solutions are reasonable.

AERO Crosswalk

Topic	Concept	Common Core		AERO
$\begin{aligned} & \mathbb{B} \\ & \stackrel{y}{4} \\ & \underline{y} \\ & \underset{4}{4} \end{aligned}$	易	Solve systems of equations.	5. Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.	A-1 7.4 a Understand the relationship between a solution of a pair of linear equations in two variables and the graphs of the corresponding lines. Solve
			6. Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.	pairs of linear equations in two variables by graphing, substitution or elimination. A-1 7.4 b Solve problems that can
			7. Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y=-3 x$ and the circle $x^{2}+$ $y^{2}=3$.	be modeled using pairs of linear equations in two variables, interpret the solutions and determine whether the solutions are reasonable. A-2 7.2 a Solve systems of linear equations and inequalities in three variables by substitution
			8. (+) Represent a system of linear equations as a single matrix equation in a vector variable.	and elimination. A-2 7.2b Solve problems that can
			9. (+) Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using technology for matrices of dimension 3 $\times 3$ or greater).	be modeled using systems of linear equations in three variables, interpret the solutions and determine whether the solutions are reasonable.
				AERO needs to consider from three to two variables

[^2]| Topic | Concept | Common Core | | AERO |
| :---: | :---: | :---: | :---: | :---: |
| | Reasoning With Equation and Inequalities | Represent and solve equations and inequalities graphically. | 10. Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).
 11. Explain why the xcoordinates of the points where the graphs of the equations $y=f(x)$ and $y=$ $g(x)$ intersect are the solutions of the equation $\mathrm{f}(\mathrm{x})$ $=\mathrm{g}(\mathrm{x})$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $\mathrm{f}(\mathrm{x})$ and/or $\mathrm{g}(\mathrm{x})$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. | A-1
 7.4 a Understand the relationship between a solution of a pair of linear equations in two variables and the graphs of the corresponding lines. Solve pairs of linear equations in two variables by graphing, substitution or elimination.
 A-1
 7.4 b Solve problems that can be modeled using pairs of linear equations in two variables, interpret the solutions and determine whether the solutions are reasonable |
| | | | 12. Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding halfplane | A-1
 7.4c Graph with and without technology the solution set for a pair of linear inequalities in two variables. Use the graph to find the solution set |

[^3]| Topic | Concept | Common Core | | AERO |
| :---: | :---: | :---: | :---: | :---: |
| | | Understand the concept of a function and use function notation. | 1. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $\mathrm{y}=$ $\mathrm{f}(\mathrm{x})$. | A-1
 7.1a Find the zeros, domain and range of a function. |
| $\underset{O}{2}$ | | | 2. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. | A-1
 7.1b Use and interpret function notation, including evaluation of functions represented by tables, graphs, words, equations or a set of ordered pairs. |
| | 荷 | | 3. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0)=$ $\mathrm{f}(1)=1, \mathrm{f}(\mathrm{n}+1)=\mathrm{f}(\mathrm{n})+\mathrm{f}(\mathrm{n}-$ 1) for $n \geq 1$. | A-2
 7.7 a Write the recursive formula for arithmetic and geometric sequences and find specific terms of arithmetic and geometric sequences.
 A-2
 7.7 b Write the formula for the general term for arithmetic and geometric sequences and make connections to linear and exponential functions.
 A-2
 7.7 c Find partial sums of arithmetic and geometric series. |

AERO Crosswalk

Topic	Concept	Common Core		AERO
\square	.	Interpret functions that arise in applications in terms of the context.	4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.	A-1 7.1c Recognize and describe the relationships among the solutions of an equation, the zeros of a function, the x intercepts of a graph and the factors of a polynomial expression
$\begin{aligned} & \text { E } \\ & \text { Z } \\ & \text { B } \end{aligned}$	淢		5. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $\mathrm{h}(\mathrm{n})$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.	A-1 7.1b Use and interpret function notation, including evaluation of functions represented by tables, graphs, words, equations or a set of ordered pairs.
			6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.	A-1 7.1b Use and interpret function notation, including evaluation of functions represented by tables, graphs, words, equations or a set of ordered pairs.

AERO Crosswalk

Topic	Concept	Common Core	AERO	
		Analyze functions using different representations.	7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using	A-1 technology for more complicated cases.

AERO Crosswalk
110

AERO Crosswalk

111

Topic	Concept	Common Core		AERO
		Analyze functions using different representations.	8. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context. b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $\mathrm{y}=(1.02) \mathrm{t}, \mathrm{y}=$ $(0.97) t, \mathrm{y}=(1.01) 12 \mathrm{t}, \mathrm{y}=$ (1.2)t/10, and classify them as representing exponential growth or decay.	A-1 7.6 b Solve quadratic equations in the real number system with real number solutions by factoring, by completing the square and by using the quadratic formula A-2 7.5 c Understand the properties of rational exponents and use the properties to simplify, multiply, divide and find powers of expressions containing negative and fractional exponents. Relate expressions containing rational exponents to the corresponding radical expressions.
			9. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum	Application of All of the indicators dealing with properties of functions

AERO Crosswalk
112

Topic	Concept	Common Core		AERO
	弟	Build a function that models a relationship between two quantities.	1. Write a function that describes a relationship between two quantities. Determine an explicit expression, a recursive process, or steps for calculation from a context. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model. $(+)$ Compose functions. For example, if $\mathrm{T}(\mathrm{y})$ is the temperature in the atmosphere as a function of height, and $h(t)$ is the height of a weather balloon as a function of time, then $\mathrm{T}(\mathrm{h}(\mathrm{t})$) is the temperature at the location of the weather balloon as a function of time.	These are applications of All of the indicators dealing with properties of functions
			2. Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.	A-2 7.7 a Write the recursive formula for arithmetic and geometric sequences and find specific terms of arithmetic and geometric sequences

[^4]| Topic | Concept | Common Core | AERO | |
| :--- | :--- | :--- | :--- | :--- |
| | | Build new
 functions from
 existing
 functions. | 3. Identify the effect on the
 graph of replacing $\mathrm{f}(\mathrm{x})$ by
 $\mathrm{f}(\mathrm{x}) \mathrm{k}, \mathrm{k}, \mathrm{f}(\mathrm{x}), \mathrm{f}(\mathrm{kx})$, and
 $\mathrm{f}(\mathrm{x}+\mathrm{k})$ for specific values
 of $\mathrm{k}($ both positive and | A-2
 7.3 e Determine how the
 graph of a parabola changes if
 a, b and c changes in the
 equation $\mathrm{y}=\mathrm{a}(\mathrm{x}-\mathrm{b})^{2}+\mathrm{c}$.
 Find an equation for a
 parabola when given
 sufficient information. |

AERO Crosswalk

114

| Topic | Concept | Common Core | |
| :--- | :--- | :--- | :--- | | AERO |
| :--- |

AERO Crosswalk

115

Topic	Concept	Common Core		AERO
		Construct and compare linear, quadratic, and exponential models and solve problems.	1. Distinguish between situations that can be modeled with linear functions and with exponential functions. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.	Precalculus 1.1a Use paper and pencil methods and technology to graph polynomial, absolute value, rational, algebraic, exponential, logarithmic, trigonometric, inverse trigonometric and piecewise- defined functions. Use these graphs to solve problems, and translate among verbal, tabular, graphical and symbolic representations of functions by using technology as appropriate

Topic	Concept	Common Core		AERO
		Construct and compare linear, quadratic, and exponential models and solve problems.	3. Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.	Precalculus 1.1a Use paper and pencil methods and technology to graph polynomial, absolute value, rational, algebraic, exponential, logarithmic, trigonometric, inverse trigonometric and piecewise- defined functions. Use these graphs to solve problems, and translate among verbal, tabular, graphical and symbolic representations of functions by using technology as appropriate

AERO Crosswalk
117

AERO Crosswalk

Topic	Concept	Comm Core		AERO
		Model periodic phenomena with trigonometric functions.	5. Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.	Precalculus 3.2 a Analyze and graph trigonometric functions, including the translation of these trigonometric functions - Describe their characteristics (i .e e, spread, amplitude, zeros, symmetry, phase, shift, vertical shift, frequency)

AERO Crosswalk

119

AERO Crosswalk

Topic	Concept	Common Core		AERO
		Experiment with transformations in the plane	5. Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another	Geom 8.2 b Identify types of symmetry (i.e., line, point, rotational, self- congruences) of polygons

[^5]| Topic | Concept | Common Core | | AERO |
| :---: | :---: | :---: | :---: | :---: |
| | | Prove geometric theorems | 9. Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints. | Geom
 8.1d Identify and apply properties of and theorems about parallel and perpendicular lines, write equations of parallel and perpendicular lines, and develop simple geometric proofs involving parallel and perpendicular lines. |
| $\underset{i n}{\text { Pa }}$ | ت | | 10. Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point. | Geom Isosceles Triangles 8.2 p Prove and apply the isosceles triangle theorem and its converse.
 Geom Right Triangles 8.2 q Prove the Pythagorean Theorem and its converse and use them to solve problems, including problems involving the length of a segment in the coordinate plane |
| | U | | 11. Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals. | Geom
 8.2 f Deduce formulas relating lengths and sides, perimeters, and areas of regular polygons .
 Understand how limiting cases of such formulas lead to expressions for the circumference and the area of a circle
 Geom
 8.2 g Recognize and use coordinate geometry to verify properties of polygons such as regularity, congruence and similarity.
 Geom
 8.2 h Develop simple geometric proofs involving congruent and similar polygons and provide reasons for each statement . |
| | | | RO Crosswalk 122 | |

Topic	Concept	Common Core		AERO
	U	Make geometric constructions	12. Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line. 13. Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.	Geom 8.3 a Construct the circle that passes through three given points not on a line. Construct tangents to circles . Circumscribe and inscribe circles. Justify the process used . Geom 8.1f Represent geometric objects and figures algebraically using coordinates, use algebra to solve geometric problems, and develop simple coordinate proofs involving geometric objects in the coordinate plane.

AERO Crosswalk

Topic	Concept	Common Core	AERO	
		Understand similarity in terms of similarity transformations	1. Verify experimentally the properties of dilations given by a center and a scale factor:	Geom 8.2 d Predict and describe the results of translations, reflections and rotations on polygons . Describe a motion or series of motions that will show that two shapes are congruent .

AERO Crosswalk
124

| Topic | Concept | Common Core | AERO |
| :--- | :--- | :--- | :--- | :--- |
| | Prove theorems
 involving
 similarity | 4. Prove theorems about
 triangles. Theorems
 include: a line parallel to
 one side of a triangle
 divides the other two
 proportionally, and
 conversely, the Pythagorean
 Theorem proved using
 triangle similarity. | Geom
 8.2 q Prove the Pythagorean
 Theorem and its converse
 and use them to solve
 problems, including
 problems involving the
 length of a segment in the
 coordinate plane . |

[^6]| Topic | Concept | Common Core | | AERO |
| :---: | :---: | :---: | :---: | :---: |
| | | Understand and apply theorems about circles | 1. Prove that all circles are similar.
 2. Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle. | Geom
 8.3 b Define, deduce and use formulas for, and prove theorems for radius, diameter, chord, secant and tangent |
| | | | 3. Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle. | Geom
 8.3 a Construct the circle that passes through three given points not on a line . Construct tangents to circles . Circumscribe and inscribe circles. Justify the process used. |
| | | | 4. (+) Construct a tangent line from a point outside a given circle to the circle. | |

[^7]| Topic | Concept | Common Core | | AERO |
| :--- | :--- | :--- | :--- | :--- |

Topic	Concept	Common Core		AERO
		Use coordinates to prove simple geometric theorems algebraically	4. Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point $(1, \sqrt{ } 3)$ lies on the circle centered at the origin and containing the point (0,2).	Geom 8.1d Identify and apply properties of and theorems about parallel and perpendicular lines, write equations of parallel and perpendicular lines, and develop simple geometric proofs involving parallel and perpendicular lines
			5. Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).	
			6 . Find the point on a directed line segment between two given points that partitions the segment in a given ratio.	
			7. Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.	

AERO Crosswalk

| Topic | Concept | Common Core | |
| :--- | :--- | :--- | :--- | | AERO |
| :--- |

Topic	Concept	Common Core		AERO
		Apply geometric concepts in modeling situations	1. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).	All applications of geometry indicators
			2. Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).	
			3. Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).	

[^8]-

- •
- •
-•
-

.
.
.
\cdot
\cdot
.
.

- AERO Crosswalk

Topic	Concept	Common Core		AERO
		Summarize, represent, and interpret data on a single count or measurement variable	1. Represent data with plots on the real number line (dot plots, histograms, and box plots). 2. Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets. 3. Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers). 4. Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve	A-1 7.7a Organize and display data using appropriate methods to detect patterns and departures from patterns. Summarize the data using measures of center (i.e., mean, median) and spread (i.e., range, percentiles, variance, standard deviation). Compare data sets using graphs and summary statistics.

AERO Crosswalk

Topic	Concept	Common Core		AERO
		Summarize, represent, and interpret data on two categorical and quantitative variables	5. Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data. 6. Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. b. Informally assess the fit of a function by plotting and analyzing residuals. c. Fit a linear function for a scatter plot that suggests a linear association.	A-1 7.7a Organize and display data using appropriate methods to detect patterns and departures from patterns. Summarize the data using measures of center (i.e., mean, median) and spread (i.e., range, percentiles, variance, standard deviation). Compare data sets using graphs and summary statistics.

AERO Crosswalk

Topic	Concept	Common Core		AERO

Topic	Concept	Common Core		AERO
	Making Inferences and Justifying Conclusions	Make inferences and justify conclusions from sample surveys, experiments, and observational studies	3. Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each. 4. Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling. 5. Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant. 6. Evaluate reports based on data.	A-1 7.7b Distinguish between random and non-random sampling methods, identify possible sources of bias in sampling, describe how such bias can be controlled and reduced, evaluate the characteristics of a good survey and well-designed experiment, design simple experiments or investigations to collect data to answer questions of interest, and make inferences from sample results.

\qquad
\qquad
\qquad
\qquad
\qquad

Topic	Concept	Comon Core	AERO	
		Understand independence and conditional probability and use them to interpret data	1. Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").	A-2 7.8 a Determine the probability of simple events involving independent and dependent events and conditional probability. Analyze probabilities to interpret odds and risk of events.

AERO Crosswalk

Topic	Concept	Common Core	AERO	
		Understand independence and conditional probability and use them to interpret data	4. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math,	A-2 science, and English. probability of simple events involving independent and dependent events and conditional probability. Analyze probabilities to interpret odds and risk of events.

[^9]	Topic	Concept	Comon Core	AERO

AERO Crosswalk 138

Topic	Concept	Common Core		AERO
		Calculate expected values and use them to solve problems	1. (+) Define a random variable for a quantity of interest by assigning a numerical value to each event in a sample space; graph the corresponding probability distribution using the same graphical displays	A-2 as for data distributions.
andermine the probability of simple events involving independent and dependent events and conditional probability. Analyze probabilities to interper odds and risk of events.				

AERO Crosswalk

 139| Topic | Concept | Common Core | AERO | |
| :--- | :--- | :--- | :--- | :--- |
| | | Calculate
 expected
 values and use
 them to solve
 problems | 4. (+) Develop a probability
 distribution for a random
 variable defined for a
 sample space in which
 probabilities are assigned
 empirically; find the
 expected value. For | A-2
 7.8 a Determine the
 probability of simple events
 involving independent and
 dependent events and
 conditional probability.
 Analyze probabilities to
 interpret odds and risk of
 events. |

[^10]| Topic | Concept | Comon Core | | AERO |
| :--- | :--- | :--- | :--- | :--- |
| | | Use probability
 to evaluate
 outcomes of
 decisions | 5. (+) Weigh the possible
 outcomes of a decision by
 assigning probabilities to
 payoff values and finding
 expected values. | A-2
 7.8 a Determine the
 probability of simple events
 involving independent and
 dependent events and
 conditional probability.
 Analyze probabilities to
 interpret odds and risk of
 events. |

[^11]
[^0]: .

[^1]: .
 .
 \qquad
 \qquad

[^2]: AERO Crosswalk

[^3]: . $\stackrel{\rightharpoonup}{5}$
 \qquad
 \qquad
 \qquad
 \qquad
 \qquad

[^4]: -

 .
 .
 \cdot
 . . .

[^5]: AERO Crosswalk
 121

[^6]: AERO Crosswalk
 126

[^7]: AERO Crosswalk
 127

[^8]: -

[^9]:

 AERO Crosswalk

[^10]: AERO Crosswalk

[^11]: AERO Crosswalk

